Overview of PFAS Impacts at Power Generation Facilities

Lori Zito, CHMM May 2025

Overview

PFAS regulations

Approach

Case Studies for effluent usage and fire training

Next Steps

Potential Regulatory Nexus

Drinking Water MCL

• Low benchmark 4 ppt

CERCLA

- Response Action Authority/ Investigations
- Continuous release

NPDES

- Discharges/effluent limits
- Surface water quality standards
- MSGP

RCRA

Solid waste disposal protocols

Air

 Focus on PFAS Information and measurement techniques

TSCA

• Section 8(a)7 reporting

TRI

Annual reporting

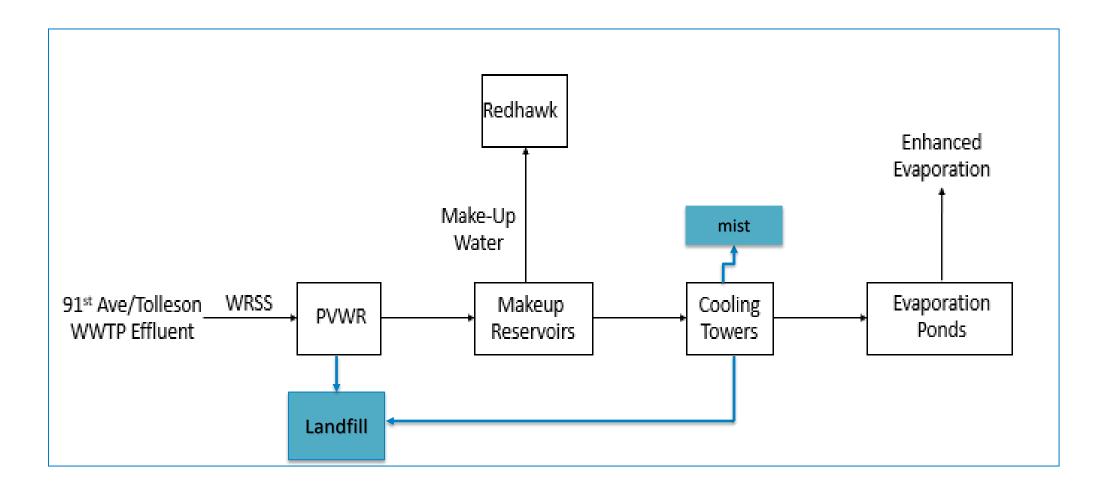
State

- Aquifer Water Quality Standards
- Advanced Water Purification Rule

Approach

PFAS Strategy Team Track regulatory developments Establish priorities Drinking Water • Inventory and Procurement • Identify historic activities with potential to have PFAS nexus (fires, fire-training, etc) Agency activity Leveraging time and timing of next steps at APS sites • Revisit Policy

Case Study 1: Nuclear Generation


Treated effluent

- Receives 80,000 AF/year
- 87% of annual water use is reclaimed water
- Water is cycled 15x

В	C	D	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	
detected concentration >RL													
Sample Event	7	(ppt)	tzsite	Sundance	Gila Bend	Winkelman	Globe - Pinal Cre	ek Festival Ranch	COP 91st Ave	Bullhead City	Wickenburg Ranch	n El Mirage	Toll
Sample Event	CAS	Units	ent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Efflu
nX)	13252136 r	ng/L		<0.89*	<4.6*	<0.93*	<0.95*	<0.95*	<0.92*	<0.96*	<0.92*	<0.91*	<4.6
	4151502 r	ng/L	*	<0.18*	<0.91*	<0.18*	<0.19*	<0.19*	0.41 B, <0.8**, >0.18	0.19 B, <0.83**, >0.19	<0.18*	<0.18*	<0.9
	2991506 r	ng/L	0.81	1 <0.27*	<1.4*	<0.28*	<0.28*	<0.28*	<0.28*	<0.29*	<0.28*	<0.27*	<1.4
	1691992 r	ng/L	7*	<0.96*	<5*	<1*	<1*	<1*	<1*	<1*	<1*	<0.99*	<5*
	151772586 r	ng/L	*	<0.3*	<1.6*	<0.32*	<0.32*	<0.32*	<0.31*	<0.33*	<0.31*	<0.31*	<1.6
	31506328 r	ng/L	*	<0.22*	<1.1*	<0.23*	<0.23*	<0.23*	0.65 B, <0.8**, >0.23	0.35 B, <0.83**, >0.24	<0.23*	<0.22*	<1.1
	2355319 r	ng/L	1.6	6 0.41, <0.96**, >0.35	<1.8*	<0.37*	<0.38*	<0.38*	0.41, <1**, >0.37	<0.38*	<0.37*	<0.36*	<1.8
	24448097 r	ng/L		<1.1*	<5.8*	<1.2*	<1.2*	<1.2*	<1.2*	<1.2*	<1.2*	<1.2*	<5.8
inesulfonic acid (PFBS)	375735 r	ng/L	4.9	3.8	3 <0.72*		57	15 4	.3 8.	.8 5.	.2 2	.5	5.0
anoic acid (PFBA)	375224 r	ng/L	3.6	5 3.8	3 <2.4*		3.5	4.5 4	.5 8.	.0 3.	.4 6	5.0 1.2, <3.2**, >0.47	<2.4
anesulfonic acid (PFDS)	335773 r	ng/L	*	<0.16*	<0.82*	<0.17*	<0.17*	<0.17*	<0.16*	<0.17*	<0.16*	<0.16*	<0.8
anoic acid (PFDA)		100000000000000000000000000000000000000	1.6**, >0.39	2.7	2 <2*	<0.41*	0.55, <1.6**, >0.4	1 5	.3 1	.7 1, <1.7**, >0.42	1	17 1, <1.6**, >0.4	<2*
ecanesulfonic acid (PFDoS)	79780395 r	ng/L	*	<0.21*	<1.1*	<0.22*	<0.22*	<0.22*	<0.22*	<0.22*	<0.21*	<0.21*	<1.1
ecanoic acid (PFDoA)	307551 r	ng/L	*	<0.29*	<1.5*	<0.3*	<0.31*	<0.31*	<0.3*	<0.31*	<0.3*	<0.3*	<1.5
tanesulfonic acid (PFHpS)	375928 r		<0.78**, >0.19	<0.19*	<0.99*	<0.2*	<0.2*	<0.2*	<0.2*	0.22, <0.83**, >0.21	<0.2*	<0.2*	<0.9
tanoic acid (PFHpA)	375859 r	ng/L	1.6	5 4.9	<1.3*		1.2	1.2 3	.0 1	.5 1.	.7 2	2.8 0.62, <0.79**, >0.2	25 <1.3
anesulfonic acid (PFHxS)	355464 r	ng/L	1.4	4 0.88 i	<0.98*		1.7	1.9 <0.2*	2	.7 9.	.7 1 i	<0.19*	<0.9
anoic acid (PFHxA)	307244 r		11	1 13	6.9	,	4.3	16	30	12 1	13 2	23	11
anesulfonic acid (PFNS)	68259121 r	ng/L		<0.19*	<1*	<0.2*	<0.21*	<0.21*	<0.2*	<0.21*	<0.2*	<0.2*	<1*
anoic acid (PFNA)	375951 r	ng/L	0.97**, >0.32	0.66, <0.96**, >0.32	<1.6*	0.62, <1**, >0.33	0.35, <1**, >0.34	0.64, <1**, >0.34	4 0.8, <1**, >0.33	<0.34*	2	2.0 <0.32*	<1.6
nesulfonamide (PFOSA)	754916 r		*	<0.17*	<0.87*	<0.17*	<0.18*	<0.18*	<0.17*	<0.18*	<0.17*	<0.17*	<0.8
nesulfonic acid (PFOS)	1763231 r		5.5	5 1.4	1 1.4, <4**, >1.1		9.0	2.5 0.8	34 7.	.8 4.	.9 3	.0	1.5 <1.1
noic acid (PFOA)	335671 r	-	12	2 6.8	3 2.2, <4**, >0.92		4.8	8.9	16 8.	.6 1	16 2	21 !	5.2 3.4,
tanesulfonic acid (PFPeS)	2706914 r	ng/L	*	<0.17*	<0.88*	0.28, <0.81**, >0.1	18 <0.18*	<0.18*	<0.18*	0.78, <0.83**, >0.18	<0.18*	<0.17*	<0.8
tanoic acid (PFPeA)	2706903 r		9.3	3 25	5 <1.4*		13	50	53	9 3	34 2	25	25 <1.4
adecanoic acid (PFTeDA)	376067 r		*	<0.27*	<1.4*	<0.28*	<0.28*	<0.28*	<0.28*	<0.29*	<0.28*	<0.27*	<1.4
ecanoic acid (PFTrDA)	72629948 r	ng/L	*	<0.23*	<1.2*	<0.24*	<0.24*	<0.25*	<0.24*	<0.25*	<0.24*	<0.24*	<1.2
ecanoic acid (PFUnA)	2058948 r	ng/L		<0.29*	<1.5*	<0.31*	<0.31*	<0.31*	<0.3*	<0.32*	0.32, <0.8**, >0.3	<0.3*	<1.5
	113507827 r	ng/L	*	<0.35*	<1.8*	<0.37*	<0.37*	<0.38*	<0.37*	<0.38*	<0.36*	<0.36*	<1.8

Case Study 1

What's next

01

Oversee water delivery contracts

Monitoring, PFAS limits, etc

02

Develop site characterization Planning/DQOs/ CSM

03

Eye on regulations

- •NPDES and RCRA developments
- •AWP Program in AZ competition for water
- •AWQS for PFAS in AZ 4 ppt MCL proposed
- •Surface water quality standards

04

Policy

- •APS
- •EPA/ Passive Receiver

Case Study 2

Jacobson Mfg. Co. Inc. Mesa - North West Water Reciamation Facility (NWWK) Circuit Technology, Inc. Hybrid Design Associates, LLC Fraining Center Able Metallic Services, Inc. APS - Ocotillo ection Center Southwest Thermoplastics, Inc. Service Center Varian Associates, Inc. rtiss-Wright Controls Integrated Systems, Inc. CerProbe Corporation artment Administration Tempe - Fire Station #1

Case Study 2

Sampling and Analysis

EPA Method 1633

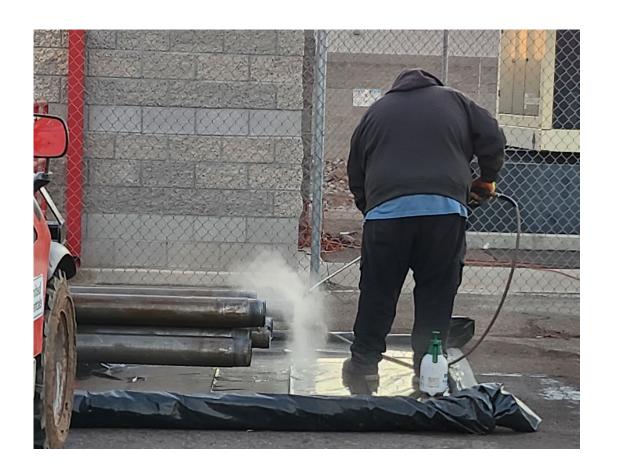
Project Action Levels (PALs) based on RSLs set the benchmarks

- Residential soil
- Soil migration to GW
- Tap Water (GW only)

Split Sample Observations

- Based on these data, did I see variation in split samples such that an MCL of 4 ppt might be concerning to me?
 - Upper aquifer/MWs yes
 - Lower aquifer/PWs yes
 - Similar variances seen for soil

			RPD	APS Split, APS-7		APS Split, APS-7	EPA, APS-7			APS Split, APS-8 EPA, APS-8			APS Split, APS-9		EPA, APS-9				
Analyte	Units	nits PAL - Tapwate		APS-7-GW-2023092	11/	APS-7-FD-GW-20230920	P1A-MWAPS7-001-202	30921	RPD	APS-8-GW-202309	91	P1A-MWAP\$8-001-	20230921	RPD	APS-9A-GW-2023	0921	1P1A-MWAP\$9-001-202309		RPD
PFHxA	ng/L	990	4.9	4.7	7	4.2	4.4		6.6	20		15		28.6	1		1.1	J	9.5
PFNS	ng/L	-	NC	0.46	U	0.5 U	0.36	UJ	NC	0.48	U	0.35	UJ	NC	0.47	J	0.36	UJ	NC
PFNA	ng/L	5.9	19.0	1.8	7	1.5	2.2		20.0	1.9		2.4		23.3	1.1		1.3	J	16.7
PFOSA	ng/L	-	NC	0.46	U	0.5 U	0.31	UJ	NC	0.48	U	0.3	UJ	NC	0.47	U	0.31	UJ	NC
PFOS	ng/L	4.0	32.3	35		27	30		15.4	13		12		8.0	7.5		6.2		19.0
PFOA	ng/L	6.0	18.2	7.2		5.8	7.1		1.4	17		13		26.7	2.7		2.8		3.6
PFPeS	ng/L	1	8.7	0.96		0.86 J	0.94	J	2.1	3.9		3		26.1	0.54	J	0.48	J	11.8
PFPeA	ng/L	1	12.0	3.2		2.9	3.3	J	3.1	20		17		16.2	1.2	J	1.4	J	15.4
A PER PARTIE	ng/L	2,000	NC	0.69	U	0.75 U	0.5	UJ	NC	0.71 U	U	0.49	UJ	NC	0.7	U	0.5	UJ	NC
PFTrDA	ng/L	-	NC	0.46	U	0.5 U	0.43	UJ	NC	0.48	U	0.42	UJ	NC	0.47	U	0.43	UJ	NC
PFUnA	ng/L	600	NC	0.46	U	0.5 U	0.55	UJ	NC	0.48	U	0.54	UJ	NC	0.47	J	0.55	UJ	NC
Notes:																			
Bold = detected																			
Gray highlight=	exceeds	PAL based on Ha																	
Qualifiers:																			
J = estimated																			
detected																			
non detect																			
PAL = protective																			


Project Overview and Status

Status

- Phase 1 sampling complete (2023)
- Phase 2 Step out sampling (2025)
- Monitoring wells proposed for next steps
- Revised CSM has been issued
- TBD
 - Background
 - EPA Enforcement Guidance applicability

Lessons Learned

- Don't expect EPA to meet your safety standards
- Be present
 - Marking paint
 - Daily activities the things you see
 - GW sample collection methods

Challenges

Overall: Inventory control/SDS updates

Site-specific: Ongoing soil management

- Do we test?
- Which standard is appropriate?
- How many samples?
- Disposal restrictions?

Summary

Expect to see more on PFAS

- APS Environmental, Law, Contracting, Procurement, Generation, Insurance/Risk, Community Affairs, etc
- Come to play; not to win

Actions to date:

- Removed AFFF from sites
- Ongoing inventory review
- Proactive DW monitoring of owned systems
- Smarter in our Contracting
- High Level DQOs/ CSM/ Site Characterization

