Sampling Considerations for PFAS Forensics: Beyond Method 1633

Presented by Sarah LaRoe, Ph.D.

May 21, 2025

Wisconsin Department of Natural Resources Data

Potential PFAS Sources to Utility Plant Effluent

- On-site use of firefighting foam (aqueous film-forming foams [AFFF])
- Import of PFAS in cooling water
 - Depends on upstream sources
 - Potential concentration of PFAS by evaporation

Identifying and limiting sources is the best first step in addressing discharge concentrations

Initial Steps: Conceptual Site Model

Understand Upstream Sources

- Historical Research
- Upstream/Intake Sampling

Types of PFAS Formulations/Source Signatures

Types of PFAS Formulations/Source Signatures

Images created with Chat GPT

Forensics = Pattern Recognition

More Data = More Unique Patterns

*Estimated by Trier et al. 2025. "The Critical Role of Commercial Analytical Reference Standards in the Control of Chemical Risks: The Case of PFAS and Ways Forward." *Environmental Health Perspectives* 133(1).

Types of Laboratory Analyses

Method 1633

TARGET

ANALYSES

NON-TARGET

ANALYSES

TOTAL ORGANIC FLUORINE (TOF)

TOTAL OXIDIZABLE PRECURSOR (TOP)

Target Analysis

- Laboratory tests concentrations of a set list of analytes
- Selective and sensitive
- Limited by the number of analytical standards (comparison compounds)

Method	Number of PFAS	
EPA 1633	40	
EPA 537/537.1	18	
EPA 533	25	
Alt. laboratory methods	Var.	

Image created with Chat GPT

Method 1633 Analyte List

egrade

Compounds with current EPA drinking water or surface water criteria

> PFOSA N-MeFOSE N-EtFOSE N-MeFOSA N-EtFOSA N-MeFOSAA N-EtFOSAA

Precursors *Polyfluorinated*

ADONA <u>HFPODA (GenX)</u> 9CI-PF3ONS 11CI-PF3OUdS N-FDHA PFEESA PFMPA PFMBA

Other PFAS Not precursors

R ANCHOR

Types of Laboratory Analyses – Isomer Analysis

Non-Target Analysis

- Goal to identify all compounds
 Not just pre-defined compounds
- No analytical standards for comparison
- More uncertainty with identifications
 - Relies on data analysis techniques
 - Qualitative and semiquantitative results
- May be able to determine presence or absence of unique compounds

AFFF: ECF-Based Formulations

Solid: Target Analytes (Method 1633) *Hatched: Non-Target Analytes*

17

Formulations shown are as produced. Formulations will change due to environmental degradation.

Data from Houtz et al., 2013. Environmental Science & Technology 47: 8187-8195

AFFF: FT-Based Formulations

Solid: Target Analytes (Method 1633) *Hatched: Non-Target Analytes*

Formulations shown are as produced. Formulations will change due to environmental degradation.

Data from Houtz et al., 2013

18

PFAS Source Signatures: Industrial

- Industrial PFAS are manufactured through the same ECF and FT processes
- Composition depends on type of industry

Manufacturing Type	Method 1633 Target Analytes	Alt. Target/Non-Target Analytes
Metal Plating	PFBS, PFOS, 6:2 FTS	6:4 FTS, PFECHS
Waterproof Textile Coatings	PFBS, PFOS, PFOA	
Nonstick Coatings	PFOA, PFNA, GenX, ADONA	PFECAs, CIPFPECAs
Paper Manufacturing	6:2 FTS, PFHxA, MeFOSA	PAPs, PFECHS
Electronics	PFOS, PFOA, PFBS	

PFAS Source Signatures: Landfill and Wastewater

- "Pass-through" facilities
 - Effluent composition depends on inputs
- Some standard chemical markers
 - Landfill (changes with climate/age of landfill)
 - 5:3 FTCA (1633 compound)
 - Wastewater treatment plants
 - Pharmaceuticals (e.g., acetaminophen)
 - Caffeine
 - Artificial sweeteners

Understand Source Interactions

Forensic Techniques: Spatial Analyses

- Patterns across space can indicate source areas
 - Concentrations of single unique indicator compounds
 - Ratios (e.g., PFOS:PFHxS)
 - One moves faster, which changes the ratio with distance
 - Percent composition of precursors
 - Percent composition of linear versus branched isomers
 - Advanced statistical analyses

Image created with Chat GPT

Conclusions

- Identifying and reducing PFAS sources is the best first step to reducing effluent concentrations
- Start by comparing intake and effluent concentrations
 - Follow up with historical research for on- and off-site potential sources
- Develop a testing strategy based on most likely source profiles
 - Method 1633 may not tell you everything
 - Weigh pros and cons of additional laboratory testing methods to understand forensic marker compounds
- Use PFAS and spatial data together to determine source areas

What questions do you have?