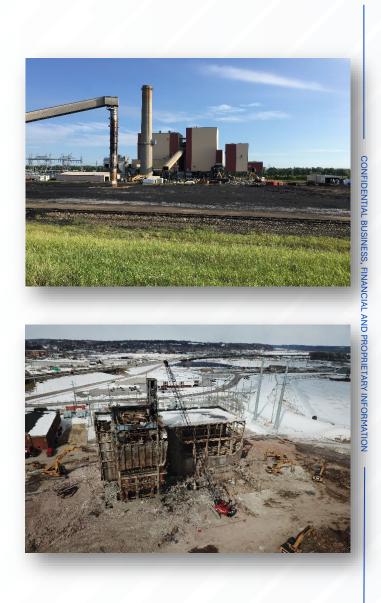

End of Life for a Power Plant: Cost Estimating & Evaluation

Steve Sheridan – Project Manager, D&D Services

May 20, 2025

Agenda

- Why is Cost Estimating Important?
- Scope of Work Determination
- Optional Pricing
- Estimating Methodology
- Constructability Evaluation
- Asset Valuation
- Retirement-in-Place (RIP) vs. Full Demolition Example
- Summary
- Questions


Why is Cost Estimating Important?

Planning Level Cost Estimates

- First step in project planning is budgeting
 - → What will it cost for the approach I like?
- Used to develop a preliminary base scope of work including assumptions for unknowns and potential alternative scopes of work
- Establishes a base line for equipment & scrap salvage value
- Assists in understanding potential concerns/restrictions with demolition means and methods
- Used to compare optional approaches (retirement-in-place, partial demolition, full demolition) before decisions are made
- Used to generate a baseline schedule for the project to understand duration

Scope of Work Determination

Scope of Work Determination

- Understand the use for the estimate
 - → Rate case support or Asset Retirement Obligations (ARO)
 - Project planning and budgeting
- Start with the end goal in mind
 - → Do you want, a grassy park, leave slabs or prep for future construction?
 - Foundation removal (complete or to a designated depth 2 or 4 feet below grade)
 - → Can masonry debris be re-used for backfill?
 - What will local and state agencies require? (engage early)

What needs to be protected?

- Underground Utilities
- Other facility assets

Utility isolation & reroute

- → Which utilities & who will be responsible for the "Cut & Cap"
- Re-routing and re-powering of critical items (sump pumps & stack lighting)
- Temporary utility install & hookup (power & water)

Scope of Work Determination

- What known regulated materials currently exist requiring removal?
 - → Asbestos (Do you have a current survey, or do you need to do one?)
 - → Universal Waste (i.e., mercury, lighting, CFCs, ballasts)
 - → Oils & Fluids (i.e., hydraulic, lube, glycol)
- What unknown environmental concerns could exist?
 - PCB contaminated concrete, building materials or soil
 - → Below grade storage and septic tanks (possible contaminated soil)
 - → PCB transformer oil
 - → CCR unit(s) closure and impact to groundwater
- Have you identified and quantified subsurface environmental concerns?
- What are some of the most expensive parts of the project and how can they be value engineered?
 - Environmental, Below Grade Demo & Backfilling

Scope of Work Determination

- Will you perform some level of decommissioning with your own forces?
- For retirement-in-place (RIP) what are the security, insurance and maintenance requirements?
- Can underground utilities be abandoned in place?
 - → Full removal
 - → Flow fill
 - Clean and CCTV documentation
- How will intake and discharge structures be decommissioned?
 - Equipment removal and sealing
 - → Equipment removal, sealing and full flow fill
 - → What will the Army Corps of Engineers allow?

Optional Pricing

Optional Pricing

What if.....

- → We want to remove the rail?
- → We want to flow fill the entire intake & discharge?
- → The boiler is full of asbestos?
- → We are required to remove all structures in bodies of water?
- The electrical wiring is coated with spray-on ACM?
- → We only decommission the plant and not remove the structure?
- We want to take out the slabs and foundations?
- The chimney cannot be imploded or is coated with asbestos?
- We only perform select demolition while protecting the other operating units?
- Helps bracket risk management (cost impacts)
 - Minimum requirements
 - → Base case
 - → Upper bound

Estimate Class	Maturity Level of Project Definition	End Usage	Expected Accuracy Range
Class 5	0%-2%	Concept screening	+/- 30% to 50%
Class 4	1% - 15%	Study or feasibility	+/- 20% to 30%
Class 3	10% - 40%	Project funding/budget	+/- 10% to 20%
Class 2	30% - 75%	Baseline budget (Bid)	+/- 5% to 15%
Class 1	65% - 100%	Discrete parts (subs)	+/- 3% to 10%

 Cost estimate classifications per the Association for the Advancement of Cost Engineering (AACE)

Estimate Class	Maturity Level of Project Definition	End Usage	Expected Accuracy Range
Class 5	0%-2%	Concept screening	+/- 30% to 50%

- High-level, desk top cost estimate. Generally, no site visit and relying on cost estimates for similar size and type projects.
- Used for Asset Retirement Obligation (ARO) assessment or for rate cases
- Accuracy is low and requires substantial contingency

Estimate Class	Maturity Level of Project Definition	End Usage	Expected Accuracy Range
Class 4	1% - 15%	Study or feasibility	+/- 20% to 30%

- Includes site visit and typically takeoffs from site measurements and drawings
- Generally coupled with a Regulated Materials Assessment to understand the cost implications of abatement and waste removal
- Scope determination is more mature and accuracy increases
- Can be used for long-term budget planning with increase contingency

Estimate Class	Maturity Level of Project Definition	End Usage	Expected Accuracy Range
Class 3	10% - 40%	Project funding/budget	+/- 10% to 20%

- Includes site visit and typically takeoffs from site measurements and drawings
- Regulated Materials Assessment is necessary to understand the cost implications of abatement and waste removal
- Scope determination is more mature and accuracy increases
- Is generally used for near-term budget planning for implementation

Estimate Class	Maturity Level of Project Definition	End Usage	Expected Accuracy Range
Class 2	30% - 75%	Baseline budget (Bid)	+/- 5% to 15%

- Includes the solicitation of bids from contractors
- Regulated Materials Assessment is necessary to obtain accurate costs for abatement and waste removal
- Scope determination is very close to complete
- Can be used to implement the project assuming scope is unchanged

Estimate Class	Maturity Level of Project Definition	End Usage	Expected Accuracy Range
Class 1	65% - 100%	Discrete parts (subs)	+/- 3% to 10%

- Includes the solicitation of bids from contractors or subcontractor
- Regulated Materials Assessment is necessary to obtain accurate costs for abatement and waste removal
- Scope determination is complete for discrete portions of work
- Is used to implement the project, most accurate

Perform a detailed "bottom up" up estimate (Class 3 & 4)

- Using as-built drawings, equipment data sheets & environmental survey to cotablish material quantities
- Investigate and perform field take-offs to compliment data provided
- Demolition projects are just a collection of waste stream
 - Quantify how much of each waste stream there is and how it needs to be accordent to be accordent to be accordent.
 - Scrap steel ferrous and non-ferrous
 - C&D carpet, drywall, wood, etc.
 - Masonry debris brick, block & concrete
 - Universal waste light bulbs, ballasts, CFC's
 - E-waste computers
 - Asbestos friable & non-friable
 - Regulated waste oil's, greases & lubricants
 - Hazardous waste chemicals, acids, caustics
 - TSCA waste PCB's

\$

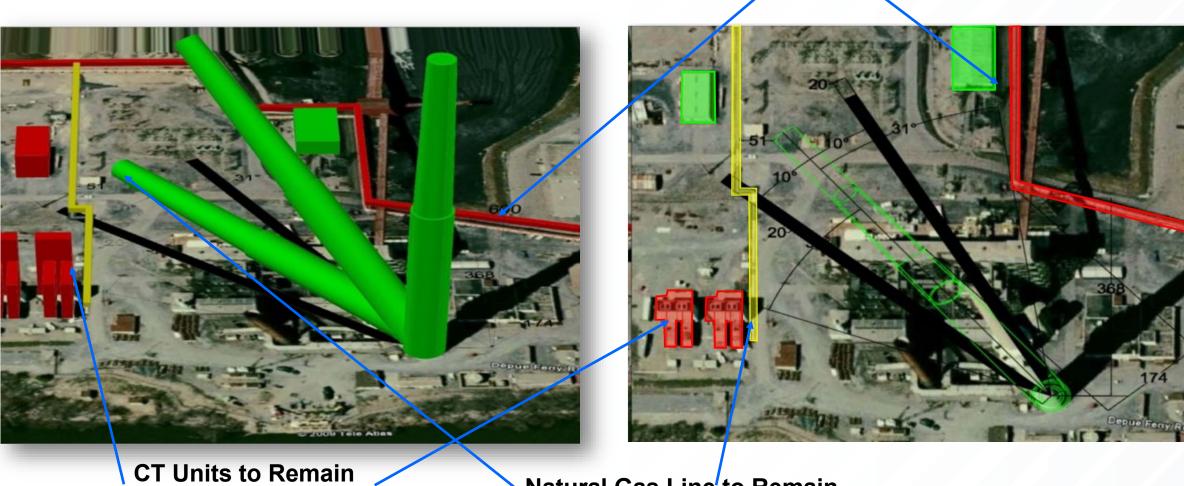
- Engage a cost estimator with demolition experience (understands how the work is done)
- Develop crew sizes, equipment and production rates
 - Use real world demolition crews and production rates
 - RS Means doesn't account for industrial demolition means and methods
 - Use fair-market labor and equipment rates
 - Contractors will come from all areas of the country to perform the work (loc apply)

Develop crew sizes, equipment and production rates (cont'd)

Use actual local landfill pricing

- C&D can range from \$35 to \$85 a ton depending on location
- Asbestos can range from \$65 to \$185 a ton depending on location
- Use actual scrap salvage market rates
 - Ferrous pricing changes monthly
 - Non-ferrous pricing changes daily
 - Will very greatly depending on geography (proximity to steel mills)
 - Factor in additional transportation costs if site is remote
 - Scrap will be discounted to account for market fluctuations (Bid date vs. Act date)

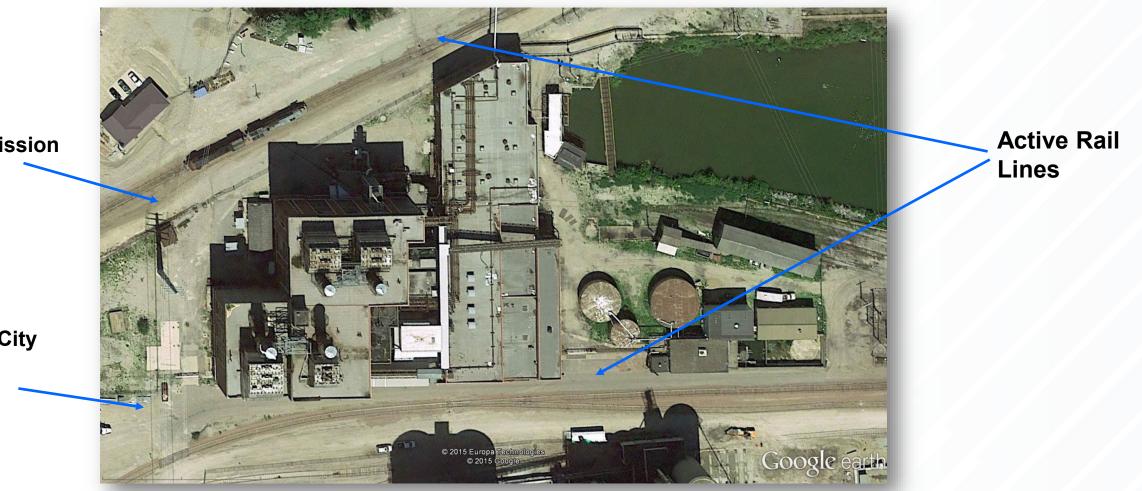
Constructability Evaluation



Constructability

Constructability

Aboveground Line to Remain


Natural Gas Line¹ to Remain

RMATION

Constructability

138 kV Transmission Line

Active City Street

X

Asset Valuation

Asset Valuation

- Know what your assets are worth before you go to bid
 - Allows you to be in a position of strength to negotiate
 - Allows you to avoid the scrap "shell game" when bids come in
- Are my assets worth more to me now or later?
 - Perform an evaluation to determine if it is better to leave it for the demolition contractor

Retire-in-Place (RIP) vs. Full Demolition Example

Retire-in-Place vs Full Demolition

Former Coal Plant – 200 MW

- Determine at which point, leaving the facility to sit idle, are you receiving diminishing returns
- A thorough cost evaluation comparing the cost of both options over a desired time frame is critical for determining the best approach for your facility.
 - → In this example, the retire-in-place option would save the client \$6.5M in the first year when compared to demolition.
 - At year 6 the cost is equal to the original full demolition.
 - Finally, by year 10, the retire-in-place option would cost \$5M more than the demolition option.

Summary

- Determine the cost classification based on the expected use of the cost estimate
- Determine scope to increase accuracy of cost estimate. Consider evaluating optional approaches to determine direction of project
- Contract with an engineering firm that has ex-demolition estimators
- Determine assets that can have value beyond the just scrap

Questions

Steve Sheridan Project Manager, Facility Decommissioning & Demolition Services

> 1431 Opus Place, Suite 400 Downers Grove, IL 60515 513-250-5225 – Cell

