Geotechnical Construction Methods in CCR Impoundment Closures

Presented by: Anthony Sak, PE

KELLER

ATTE

USWAG CCR Workshop Crystal City, Virginia August 8-10, 2022

Outline

- Geotechnical Construction Techniques
- CCR Pond Complex
 - -Temporary Earth Retention
 - -Pond Bifurcation
- Seepage Barrier

Geotechnical Construction Techniques

Ash Complex – Clean Close into On-Site Landfills

Deep Soil Mixing

Sheet Piles

Anchors

Micropiles

Compaction Grouting

.

• Dewatering

- Predrilling (30 and 36inch diameter)
- Geotechnical Instrumentation
- Geotechnical Investigation

Earth Retention System

Dewatering

2018/2019

- Two component dewatering system
 - Work platform stability
 - Well points between rows of sheets (dewater ash for excavation)
 - Well points on retained (landfill) side of sheets (reduce pressure on sheets)

2021

- Two component dewatering system
 - Work platform stability
 - Vertical well points behind sheetpiles
 - Battered well points drilled through the exposed wall face

Dewatering System

A52

Drill and Install Anchors

3 to 6 strand anchors Lengths 85 to 135 ft

Install Walers

DEERE

Setup for Anchor Testing/Lockoff

- Design loads (DL)
 - -105 to 215 kips
- Tested to 133% DL
- Locked off at DL

2021 Earth Retention

SHORING WALL 20+00.00 _750 5'-0" GAS LINE CLEAR ZONE B 26 SM GRANULAR ----CPTTER 47 CR 32-YTPR 46 FINE GRAINED CL 5 FINE GRAINED FINE GRAINED FINE GRAINED AGH 8-SC 2 SC 2 FINE GRAINED SP 4 FILL 14 FINE GRAINED PWR 100+ SM SM GRANULAR SM GRANU PWR 80 RF MAR RF -50 -40 -20 -10-30 BT 🕻 KELL

Keller Sheetpiles (2019)

BOULKRAUE

1

I

UIRE

Excavation Progression

Pond Bifurcation - Subsurface Profile

KELLEK

Pond Bifurcation - Divider Berm Construction

Divider Berm / DSM Core Solution

Divider Berm / DSM Core Solution

Divider Berm / DSM Core Solution

Deep Soil Mixing – max depth 40 feet through berm and CCR

CCR Impoundment Complex Closure Geotechnical Construction Quantities

Excavation Support Scope

- Sheetpiles installed
 - 3,600 linear feet of wall
 - 130,000 square feet
- Anchors installed 812
 - Mostly 5 strand anchors at a design load of 175 kips
- Micropiles 61

KELLER

Dewatering wells - 410

Pond Bifurcation Scope

- Deep soil mixing
 - Ninety-two, 8.5-foot diameter columns
 - Seventy-one, 6-foot diameter columns
 - 19,500 cubic yards
- Mass soil mixing 4,000 cubic yards treated
- Jet grouting 600 cubic yards in 64 columns
- Compaction grouting 385 cubic yards

Seepage Barrier Project

- Hybrid pond closure
 - Dredge material from behind dam
 - Drain pond
 - Dry stack CCR in upstream fingers
 - Decommission dam

Holding Pond

- Dredge operation required a holding pond created in a cove of the CCR pond
- Holding pond must be hydraulicly separated from CCR pond, due to draining main pond
- Berm across cove also required
- Other geotechnical techniques were considered to construct a seepage barrier

Subsurface Profile

- Fly Ash
- Bottom Ash
- Mix of Fly/Bottom Ash
- SPT N-value
 - -Weight of Rod
 - -Weight of Hammer
 - -1 to 2 blows per foot

Keller Scope of Work

- Design geogrid-reinforced berm across pond cove
 - -GC constructed using bottom ash
- Install well-point dewatering system
- Geotechnical instrumentation monitoring
- Install 465-foot long sheetpile barrier

Berm Design/Construction Sequence

- Place bottom ash bridge lift to design grade
- Multiple layers of geogrid reinforcement with reinforced overlaps (alternate layer roll direction)

- Place/compact 1 to 3 feet of bottom ash fill
- Place/compact bottom ash fill in 12inch lifts to final grade, let embankment rest
- Cut berm down to sheetpile working grade

Instrumentation and Dewatering

- Vibrating wire piezometers monitor pore water pressure with depth during sheetpile installation
 - -Set threshold levels
- Optical survey using automated monitoring total station
- Two lines of jetted well points installed to locally draw down the water in the CCR supporting the berm

Sheetpile Barrier

- Penetrate through berm and sluiced CCR into natural soil overburden (2 feet)
- No watertightness specification leaky barrier
- Site access limited delivered pile length to 40 feet (splicing required), maximum length 85 feet

Crane Operates from Mats

Use Guide Beams for Layout

Piles Installed with a Diesel Hammer & Vibratory Hammer

Sheetpile Splicing

Completed Sheetpile Barrier

- 101 pairs of sheets
- 465 feet barrier length
- 23,559 sq. ft.

Instrumentation Monitoring during Geotechnical Construction

- Geo-Instruments installed a comprehensive system installed:
 - Vibration monitoring
 - Vibrating wire piezometers
 - Inclinometers (SAA)
 - Standpipe piezometers
- Solar powered
- Website Access
- Trigger levels
- Notifications
 - Individual equipment alarms
 - Site alarms (light and siren)
 - Emails/texts

Other Applications of Geotechnical Construction Techniques Applied to CCR

- Aggregate pier and rigid inclusion ground improvement for foundations of light to moderately loaded structures/tanks/silos on weak ground
- Seepage barriers using conventional slurry wall or TRD
- In-situ stabilization/bottom seals using jet grouting or deep soil mixing

Slurry Wall

TRD

Questions

Tony Sak

-asak@keller-na.com

